본문 바로가기

입문 SLAM 14강 (번역)

입문 Visual SLAM 14강 : 참고문헌

 

 

Preface

이 문서는 중국어 원서인 “입문 Visual SLAM 이론에서 연습까지 14 강(视觉SLAM十四讲 从理论到实践)” 책의  원저자로부터 한글 번역 허가를 받고 구글 번역기를 이용하여 작성된 문서입니다. 본 문서는 아래의 Contribution을 특징으로 합니다.

 

  • 중국어 전공 서적을 구글 번역기를 이용해 한글로 초벌 번역했습니다.
  • 초벌 번역 후 매끄럽지 않은 문장은 문맥에 맞게 수정되었습니다. 
  • 문서 내용 중 참고할만한 웹문서를 코멘트로 추가했습니다.  
  • SLAM 연구에서 주로 사용되는 용어는 한글로 번역된 용어보다 주로 사용되는 영어로 된 용어 그대로 표시하였습니다.

그럼에도 불구하고 부정확하거나 매끄럽지 않은 부분이 있을 수 있습니다. 그런 부분은 코멘트로 제안해주시면 반영하도록 노력하겠습니다. 또한 읽으시다가 잘 이해가 가지 않는 부분도 코멘트로 질문해주시면 답변해드리도록 하겠습니다.

 

번역 참가자: 

신동원 ( 광주과학기술원 박사과정)

김선호 ( VIRNECT 선임연구원)

조원재 ( 일본국립농업기술혁신공학센터 연구원)

장형기 ( Imperial College London 석사과정)

박준영 ( 광주과학기술원 석사과정)

 

2018년 10월 1일

신동원 드림


참고문헌

[1] A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam: Real-time single camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

 

[2] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge university press, 2003.

 

[3] R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” International Journal of Robotics Research, vol. 5, no. 4, pp. 56–68, 1986.

 

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press, 2005.

 

[5] T. Barfoot, “State estimation for robotics: A matrix lie group approach,” 2016.

 

[6] A. Pretto, E. Menegatti, and E. Pagello, “Omnidirectional dense large-scale mapping and navigation based on meaningful triangulation,” 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), pp. 3289–96, 2011.

 

[7] B. Rueckauer and T. Delbruck, “Evaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensor,” Frontiers in neuroscience, vol. 10, 2016.

 

[8] C. Cesar, L. Carlone, H. C., Y. Latif, D. Scaramuzza, J. Neira, I. D. Reid, and L. John J., “Past, present, and future of simultaneous localization and mapping: Towards the robust-perception age,” arXiv preprint arXiv:1606.05830, 2016.

 

[9] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support inference from rgbd images,” in Computer Vision–ECCV 2012, pp. 746–760, Springer, 2012.

 

[10] K. Ho and P. Newman, “Detecting loop closure with scene sequences,” International Journal of Computer Vision, vol. 74, no. 3, pp. 261–286, 2007.

 

[11] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in robotics,” in Autonomous robot vehicles, pp. 167–193, Springer, 1990.

 

[12] H. Strasdat, J. M. Montiel, and A. J. Davison, “Visual slam: Why filter?,” Image and Vision Computing, vol. 30, no. 2, pp. 65–77, 2012.

 

[13] L. Haomin, Z. Guofeng, and B. Hujun, “A survey of monocular simultaneous localization and mapping,” Journal of Computer-Aided Design and Compute Graphics, vol. 28, no. 6, pp. 855–868, 2016. in Chinese.

 

[14] M. Liang, H. Min, and R. Luo, “Graph-based slam: A survey,” ROBOT, vol. 35, no. 4, pp. 500–512, 2013. in Chinese.

 

[15] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simultaneous localization and mapping: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 55–81, 2015.

 

[16] J. Boal, Á. Sánchez-Miralles, and Á. Arranz, “Topological simultaneous localization and mapping: a survey,” Robotica, vol. 32, pp. 803–821, 2014.

 

[17] S. Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4409–4420, 2012.

 

[18] Z. Chen, J. Samarabandu, and R. Rodrigo, “Recent advances in simultaneous localization and map-building using computer vision,” Advanced Robotics, vol. 21, no. 3-4, pp. 233–265, 2007.

 

[19] J. Stuelpnagel, “On the parametrization of the three-dimensional rotation group,” SIAM Review, vol. 6, no. 4, pp. 422–430, 1964.

 

[20] T. Barfoot, J. R. Forbes, and P. T. Furgale, “Pose estimation using linearized rotations and quaternion algebra,” Acta Astronautica, vol. 68, no. 1-2, pp. 101–112, 2011.

 

[21] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, vol. 102. Springer Science & Business Media, 2013.

 

[22] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-d vision: from images to geometric models, vol. 26. Springer Science & Business Media, 2012.

 

[23] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of rgb-d SLAM systems,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580, IEEE, 2012.

 

[24] H. Strasdat, Local accuracy and global consistency for efficient visual slam. PhD thesis, Citeseer, 2012.

 

[25] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orientations,” in Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 1, pp. 666–673, Ieee, 1999.

 

[26] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE Transactions on pattern analysis and machine intelligence, vol. 30, no. 2, pp. 328–341, 2008.

 

[27] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” International journal of computer vision, vol. 47, no. 1-3, pp. 7–42, 2002.

 

[28] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison and evaluation of multi-view stereo reconstruction algorithms,” in null, pp. 519–528, IEEE, 2006.

 

[29] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski, “Building rome in a day,” in 2009 IEEE 12th international conference on computer vision, pp. 72–79, IEEE, 2009.

 

[30] P. Wolfe, “Convergence conditions for ascent methods,” SIAM review, vol. 11, no. 2, pp. 226–235, 1969.

 

[31] J. Nocedal and S. Wright, Numerical Optimization. Springer Science & Business Media, 2006.

 

[32] M. I. Lourakis and A. A. Argyros, “Sba: A software package for generic sparse bundle adjustment,” ACM Transactions on Mathematical Software (TOMS), vol. 36, no. 1, p. 2, 2009.

 

[33] G. Sibley, “Relative bundle adjustment,” Department of Engineering Science, Oxford University, Tech. Rep, vol. 2307, no. 09, 2009.

 

[34] S. Agarwal, K. Mierle, and Others, “Ceres solver.” http://ceres-solver.org.

 

[35] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: a general framework for graph optimization,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613, IEEE, 2011.

 

[36] Wikipedia, “Feature (computer vision).” "https://en.wikipedia.org/wiki/ Feature_(computer_vision)", 2016. [Online; accessed 09-July-2016].

 

[37] C. Harris and M. Stephens, “A combined corner and edge detector.,” in Alvey vision conference, vol. 15, pp. 10–5244, Citeseer, 1988.

 

[38] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in Computer Vision–ECCV 2006, pp. 430–443, Springer, 2006.

 

[39] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, pp. 593–600, IEEE, 1994.

 

[40] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

 

[41] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Computer Vision–ECCV 2006, pp. 404–417, Springer, 2006.

 

[42] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient alternative to sift or surf,” in 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571, IEEE, 2011.

 

[43] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent elementary features,” in European conference on computer vision, pp. 778–792, Springer, 2010.

 

[44] M. Nixon and A. S. Aguado, Feature extraction and image processing for computer vision. Academic Press, 2012.

 

[45] P. L. Rosin, “Measuring corner properties,” Computer Vision and Image Understanding, vol. 73, no. 2, pp. 291–307, 1999.

 

[46] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm configuration.,” in VISAPP (1), pp. 331–340, 2009.

 

[47] R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Transactions on pattern analysis and machine intelligence, vol. 19, no. 6, pp. 580–593, 1997.

 

[48] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two projections,” Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, MA Fischler and O. Firschein, eds, pp. 61–62, 1987.

 

[49] H. Li and R. Hartley, “Five-point motion estimation made easy,” in 18th International Conference on Pattern Recognition (ICPR’06), vol. 1, pp. 630–633, IEEE, 2006.

 

[50] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756–770, 2004.

 

[51] O. D. Faugeras and F. Lustman, “Motion and structure from motion in a piecewise planar environment,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 2, no. 03, pp. 485–508, 1988.

 

[52] Z. Zhang and A. R. Hanson, “3d reconstruction based on homography mapping,” ARPA Image Understanding Workshop, pp. 1007–1012, 1996.

 

[53] E. Malis and M. Vargas, Deeper understanding of the homography decomposition for vision-based control. PhD thesis, INRIA, 2007.

 

[54] A. J. Davison, “Real-time simultaneous localisation and mapping with a single camera,” in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pp. 1403–1410, IEEE, 2003.

 

[55] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution classification for the perspective-three-point problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 930–943, Aug 2003.

 

[56] A. Penate-Sanchez, J. Andrade-Cetto, and F. Moreno-Noguer, “Exhaustive linearization for robust camera pose and focal length estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 10, pp. 2387–2400, 2013.

 

[57] L. Chen, C. W. Armstrong, and D. D. Raftopoulos, “An investigation on the accuracy of three-dimensional space reconstruction using the direct linear transformation technique,” Journal of Biomechanics, vol. 27, no. 4, pp. 493–500, 1994.

 

[58] B. F. Green, “The orthogonal approximation of an oblique structure in factor analysis,” Psychometrika, vol. 17, no. 4, pp. 429–440, 1952.

 

[59] iplimage, “P3p(blog).” "http://iplimage.com/blog/p3p-perspective-point-overview/", 2016.

 

[60] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d point sets,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, no. 5, pp. 698–700, 1987.

 

[61] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud registration algorithms for mobile robotics,” Foundations and Trends in Robotics (FnTROB), vol. 4, no. 1, pp. 1–104, 2015.

 

[62] O. D. Faugeras and M. Hebert, “The representation, recognition, and locating of 3-d objects,” The International Journal of Robotics Research, vol. 5, no. 3, pp. 27–52, 1986.

 

[63] B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,” JOSA A, vol. 4, no. 4, pp. 629–642, 1987.

 

[64] G. C. Sharp, S. W. Lee, and D. K. Wehe, “Icp registration using invariant features,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 90–102, 2002.

 

[65] G. Silveira, E. Malis, and P. Rives, “An efficient direct approach to visual slam,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 969–979, 2008.

 

[66] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct monocular visual odometry,” in Robotics and Automation (ICRA), 2014 IEEE International Conference on (rs, ed.), pp. 15–22, IEEE, 2014.

 

[67] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,” in Computer Vision–ECCV 2014, pp. 834–849, Springer, 2014.

 

[68] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” arXiv preprint arXiv:1607.02565, 2016.

 

[69] B. D. Lucas, T. Kanade, et al., “An iterative image registration technique with an application to stereo vision,” 1981.

 

[70] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

 

[71] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,” International journal of computer vision, vol. 56, no. 3, pp. 221–255, 2004.

 

[72] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International Journal of Robotics Research, 2013.

 

[73] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for a monocular camera,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1456, 2013.

 

[74] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix corresponding to a change in one element of a given matrix,” The Annals of Mathematical Statistics, vol. 21, no. 1, pp. 124–127, 1950.

 

[75] V. Sujan and S. Dubowsky, “Efficient information-based visual robotic mapping in unstructured environments,” International Journal of Robotics Research, vol. 24, no. 4, pp. 275–293, 2005.

 

[76] F. Janabi-Sharifi and M. Marey, “A kalman-filter-based method for pose estimation in visual servoing,” IEEE Transactions on Robotics, vol. 26, no. 5, pp. 939–947, 2010.

 

[77] S. Li and P. Ni, “Square-root unscented kalman filter based simultaneous localization and mapping,” in Information and Automation (ICIA), 2010 IEEE International Conference on, pp. 2384–2388, IEEE, 2010.

 

[78] R. Sim, P. Elinas, and J. Little, “A study of the rao-blackwellised particle filter for efficient and accurate vision-based slam,” International Journal of Computer Vision, vol. 74, no. 3, pp. 303–318, 2007.

 

[79] J. S. Lee, S. Y. Nam, and W. K. Chung, “Robust rbpf-slam for indoor mobile robots using sonar sensors in non-static environments,” Advanced Robotics, vol. 25, no. 9-10, pp. 1227–1248, 2011.

 

[80] A. Gil, O. Reinoso, M. Ballesta, and M. Julia, “Multi-robot visual slam using a rao-blackwellized particle filter,” Robotics and Autonomous Systems, vol. 58, no. 1, pp. 68–80, 2010.

 

[81] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window filter with application to planetary landing,” Journal of Field Robotics, vol. 27, no. 5, pp. 587–608, 2010.

 

[82] L. M. Paz, J. D. Tardós, and J. Neira, “Divide and conquer: Ekf slam in o(n),” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1107–1120, 2008.

 

[83] O. G. Grasa, J. Civera, and J. Montiel, “Ekf monocular slam with relocalization for laparoscopic sequences,” in Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 4816–4821, IEEE, 2011.

 

[84] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment: a modern synthesis,” in Vision algorithms: theory and practice, pp. 298–372, Springer, 2000.

 

[85] E. Süli and D. F. Mayers, An Introduction to Numerical Analysis. Cambridge university press, 2003.

 

[86] L. Polok, V. Ila, M. Solony, P. Smrz, and P. Zemcik, “Incremental block cholesky factorization for nonlinear least squares in robotics.,” in Robotics: Science and Systems, 2013.

 

[87] R. Mur-Artal, J. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate monocular slam system,” arXiv preprint arXiv:1502.00956, 2015.

 

[88] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual–inertial odometry using nonlinear optimization,” The International Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.

 

[89] “Bundle adjustment in the large.” http://grail.cs.washington.edu/projects/ bal/.

 

[90] G. Sibley, L. Matthies, and G. Sukhatme, “A sliding window filter for incremental slam,” in Unifying perspectives in computational and robot vision, pp. 103–112, Springer, 2008.

 

[91] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visualinertial state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 10041020, 2018.

 

[92] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, “Double window optimisation for constant time visual SLAM,” 2011 IEEE International Conference On Computer Vision (ICCV), pp. 2352–2359, 2011.

 

[93] G. Dubbelman and B. Browning, “Cop-slam: Closed-form online pose-chain optimization for visual slam,” Robotics, IEEE Transactions on, vol. 31, pp. 1194–1213, Oct 2015.

 

[94] D. Lee and H. Myung, “Solution to the slam problem in low dynamic environments using a pose graph and an rgb-d sensor,” Sensors, vol. 14, no. 7, pp. 12467–12496, 2014.

 

[95] Y. Latif, C. Cadena, and J. Neira, “Robust loop closing over time for pose graph slam,” The International Journal of Robotics Research, vol. 32, no. 14, pp. 16111626, 2013.

 

[96] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, pp. 225–234, IEEE, 2007.

 

[97] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and mapping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, 2008.

 

[98] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “isam2: Incremental smoothing and mapping using the bayes tree,” The International Journal of Robotics Research, p. 0278364911430419, 2011.

 

[99] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d mapping with an rgb-d camera,” IEEE Transactions on Robotics, vol. 30, no. 1, pp. 177–187, 2014.

 

[100] D. Hahnel, W. Burgard, D. Fox, and S. Thrun, “An efficient fastslam algorithm for generating maps of large-scale cyclic environments from raw laser range measurements,” in Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, vol. 1, pp. 206–211, IEEE, 2003.

 

[101] P. Beeson, J. Modayil, and B. Kuipers, “Factoring the mapping problem: Mobile robot map-building in the hybrid spatial semantic hierarchy,” International Journal of Robotics Research, vol. 29, no. 4, pp. 428–459, 2010.

 

[102] I. Ulrich and I. Nourbakhsh, “Appearance-based place recognition for topological localization,” in Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, vol. 2, pp. 1023–1029, Ieee, 2000.

 

[103] X. Gao and T. Zhang, “Robust rgb-d simultaneous localization and mapping using planar point features,” Robotics and Autonomous Systems, vol. 72, pp. 1–14, 2015.

 

[104] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory, vol. 28, no. 2, pp. 129–137, 1982.

 

[105] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, Society for Industrial and Applied Mathematics, 2007.

 

[106] C. Chow and C. Liu, “Approximating discrete probability distributions with dependence trees,” IEEE transactions on Information Theory, vol. 14, no. 3, pp. 462–467, 1968.

 

[107] M. Cummins and P. Newman, “Fab-map: Probabilistic localization and mapping in the space of appearance,” The International Journal of Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.

 

[108] M. Cummins and P. Newman, “Accelerating fab-MAP with concentration inequalities,” IEEE Transactions On Robotics, vol. 26, no. 6, pp. 1042–1050, 2010.

 

[109] M. Cummins and P. Newman, “Appearance-only slam at large scale with fab-map 2.0,” International Journal of Robotics Research, vol. 30, no. 9, pp. 1100–1123, 2011.

 

[110] D. Galvez-Lopez and J. D. Tardos, “Bags of binary words for fast place recognition in image sequences,” IEEE Transactions On Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

 

[111] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

 

[112] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object matching in videos,” in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pp. 1470–1477, IEEE, 2003.

 

[113] S. Robertson, “Understanding inverse document frequency: on theoretical arguments for idf,” Journal of documentation, vol. 60, no. 5, pp. 503–520, 2004.

 

[114] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2161–2168, IEEE, 2006.

 

[115] C. Cadena, D. Galvez-Lopez, J. D. Tardos, and J. Neira, “Robust place recognition with stereo sequences,” IEEE Transactions on Robotics, vol. 28, no. 4, pp. 871–885, 2012.

 

[116] X. Gao and T. Zhang, “Loop closure detection for visual slam systems using deep neural networks,” in Control Conference (CCC), 2015 34th Chinese, pp. 5851–5856, IEEE, 2015.

 

[117] X. Gao and T. Zhang, “Unsupervised learning to detect loops using deep neural networks for visual slam system,” Autonomous Robots, pp. 1–18, 2015.

 

[118] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad: Cnn architecture for weakly supervised place recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297–5307, 2016.

 

[119] M. Angelina Uy and G. Hee Lee, “Pointnetvlad: Deep point cloud based retrieval for large-scale place recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4470–4479, 2018.

 

[120] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof camera relocalization,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946, 2015.

 

[121] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, and J. Tardós, “A comparison of loop closing techniques in monocular slam,” Robotics and Autonomous Systems, vol. 57, no. 12, pp. 1188–1197, 2009.

 

[122] M. Labbé and F. Michaud, “Online global loop closure detection for large-scale multisession graph-based slam,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2661–2666, IEEE, 2014.

 

[123] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J. Davison, “Slam++: Simultaneous localisation and mapping at the level of objects,” 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1352–9, 2013.

 

[124] “Correlation based similarity measure-summary.” https://siddhantahuja.wordpress.com/tag/stereo-matching/.

 

[125] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo matching,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, IEEE, 2007.

 

[126] G. Vogiatzis and C. Hernández, “Video-based, real-time multi-view stereo,” Image and Vision Computing, vol. 29, no. 7, pp. 434–441, 2011.

 

[127] A. Handa, R. A. Newcombe, A. Angeli, and A. J. Davison, “Real-time camera tracking: When is high frame-rate best?,” in European Conference on Computer Vision, pp. 222–235, Springer, 2012.

 

[128] M. Pizzoli, C. Forster, and D. Scaramuzza, “Remode: Probabilistic, monocular dense reconstruction in real time,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2609–2616, IEEE, 2014.

 

[129] J. Montiel, J. Civera, and A. J. Davison, “Unified inverse depth parametrization for monocular slam,” analysis, vol. 9, p. 1, 2006.

 

[130] J. Civera, A. J. Davison, and J. M. Montiel, “Inverse depth parametrization for monocular slam,” IEEE transactions on robotics, vol. 24, no. 5, pp. 932–945, 2008.

 

[131] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Proceedings of the fourth Eurographics symposium on Geometry processing, vol. 7, 2006.

 

[132] J. Stuckler and S. Behnke, “Multi-resolution surfel maps for efficient dense 3d modeling and tracking,” Journal of Visual Communication and Image Representation, vol. 25, no. 1, pp. 137–147, 2014.

 

[133] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: An efficient probabilistic 3d mapping framework based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

 

[134] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 1872–1878, IEEE, 2015.

 

[135] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping and tracking,” in 2011 10th IEEE international symposium on Mixed and augmented reality (ISMAR), pp. 127–136, IEEE, 2011.

 

[136] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 343–352, 2015.

 

[137] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison, “Elasticfusion: Dense slam without a pose graph,” Proc. Robotics: Science and Systems, Rome, Italy, 2015.

 

[138] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kowdle, S. O. Escolano, C. Rhemann, D. Kim, J. Taylor, et al., “Fusion4d: real-time performance capture of challenging scenes,” ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 114, 2016.

 

[139] M. Innmann, M. Zollhöfer, M. Nießner, C. Theobalt, and M. Stamminger, “Volumedeform: Real-time volumetric non-rigid reconstruction,” arXiv preprint arXiv:1603.08161, 2016.

 

[140] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for rgb-d cameras,” in Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp. 3748–3754, IEEE, 2013.

 

[141] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d cameras,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 21002106, IEEE, 2013.

 

[142] J. Gui, D. Gu, S. Wang, and H. Hu, “A review of visual inertial odometry from filtering and optimisation perspectives,” Advanced Robotics, vol. 29, pp. 1289–1301, Oct 18 2015.

 

[143] A. Martinelli, “Closed-form solution of visual-inertial structure from motion,” International Journal of Computer Vision, vol. 106, no. 2, pp. 138–152, 2014.

 

[144] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry using a direct ekf-based approach,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 298–304, IEEE, 2015.

 

[145] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-inertial odometry,” International Journal of Robotics Research, vol. 32, pp. 690–711, MAY 2013.

 

[146] G. Huang, M. Kaess, and J. J. Leonard, “Towards consistent visual-inertial navigation,” in 2014 IEEE International Conference on Robotics and Automation (icra), IEEE International Conference on Robotics and Automation ICRA, pp. 4926–4933, 2014. IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, PEOPLES R CHINA, MAY 31-JUN 07, 2014.

 

[147] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “Imu preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation,” in Robotics: Science and Systems XI, no. EPFL-CONF-214687, 2015.

 

[148] M. Tkocz and K. Janschek, “Towards consistent state and covariance initialization for monocular slam filters,” Journal of Intelligent & Robotic Systems, vol. 80, pp. 475489, DEC 2015.

 

[149] V. Usenko, J. Engel, J. Stueckler, and D. Cremers, “Direct visual-inertial odometry with stereo cameras,” in IEEE International Conference on Robotics and Automation (ICRA), May 2016.

 

[150] A. Nüchter and J. Hertzberg, “Towards semantic maps for mobile robots,” Robotics and Autonomous Systems, vol. 56, no. 11, pp. 915–926, 2008.

 

[151] J. Civera, D. Gálvez-López, L. Riazuelo, J. D. Tardós, and J. Montiel, “Towards semantic slam using a monocular camera,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp. 1277–1284, IEEE, 2011.

 

[152] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic labeling of 3d point clouds for indoor scenes,” in Advances in Neural Information Processing Systems, pp. 244–252, 2011.

 

[153] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena, “Contextually guided semantic labeling and search for three-dimensional point clouds,” The International Journal of Robotics Research, p. 0278364912461538, 2012.

 

[154] N. Fioraio and L. Di Stefano, “Joint detection, tracking and mapping by semantic bundle adjustment,” 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1538–45, 2013.

 

[155] R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison, “Dense planar slam,” in Mixed and Augmented Reality (ISMAR), 2014 IEEE International Symposium on, pp. 157–164, IEEE, 2014.

 

[156] J. Stückler, N. Biresev, and S. Behnke, “Semantic mapping using object-class segmentation of rgb-d images,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3005–3010, IEEE, 2012.

 

[157] I. Kostavelis and A. Gasteratos, “Learning spatially semantic representations for cognitive robot navigation,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 14601475, 2013.

 

[158] C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor semantic segmentation using depth information,” arXiv preprint arXiv:1301.3572, 2013.

 

[159] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in CVPR09, 2009.

 

[160] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

 

[161] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv preprint arXiv:1512.03385, 2015.

 

[162] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” in Advances in neural information processing systems, pp. 91–99, 2015.

 

[163] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” arXiv preprint arXiv:1411.4038, 2014.

 

[164] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr, “Conditional random fields as recurrent neural networks,” in International Conference on Computer Vision (ICCV), 2015.

 

[165] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik, “Indoor scene understanding with rgb-d images: Bottom-up segmentation, object detection and semantic segmentation,” International Journal of Computer Vision, pp. 1–17, 2014.

 

[166] K. Konda and R. Memisevic, “Learning visual odometry with a convolutional network,” in International Conference on Computer Vision Theory and Applications, 2015.

 

[167] Y. Hou, H. Zhang, and S. Zhou, “Convolutional neural network-based image representation for visual loop closure detection,” arXiv preprint arXiv:1504.05241, 2015.

 

[168] S. Y. An, J. G. Kang, L. K. Lee, and S. Y. Oh, “Line segment-based indoor mapping with salient line feature extraction,” Advanced Robotics, vol. 26, no. 5-6, pp. 437–460, 2012.

 

[169] H. Zhou, D. Zou, L. Pei, R. Ying, P. Liu, and W. Yu, “Structslam: Visual slam with building structure lines,” Vehicular Technology, IEEE Transactions on, vol. 64, pp. 1364–1375, April 2015.

 

[170] D. Benedettelli, A. Garulli, and A. Giannitrapani, “Cooperative slam using m-space representation of linear features,” Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1267–1278, 2012.

 

[171] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “3d normal distributions transform occupancy maps: An efficient representation for mapping in dynamic environments,” The International Journal of Robotics Research, vol. 32, no. 14, pp. 1627–1644, 2013.

 

[172] W. Maddern, M. Milford, and G. Wyeth, “Cat-slam: probabilistic localisation and mapping using a continuous appearance-based trajectory,” International Journal of Robotics Research, vol. 31, no. 4SI, pp. 429–451, 2012.

 

[173] H. Wang, Z.-G. Hou, L. Cheng, and M. Tan, “Online mapping with a mobile robot in dynamic and unknown environments,” International Journal of Modelling, Identification and Control, vol. 4, no. 4, pp. 415–423, 2008.

 

[174] D. Zou and P. Tan, “Coslam: Collaborative visual SLAM in dynamic environments,” IEEE Transactions On Pattern Analysis And Machine Intelligence, vol. 35, no. 2, pp. 354–366, 2013.

 

[175] T. A. Vidal-Calleja, C. Berger, J. Sola, and S. Lacroix, “Large scale multiple robot visual mapping with heterogeneous landmarks in semi-structured terrain,” Robotics and Autonomous Systems, vol. 59, no. 9, pp. 654–674, 2011.